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1. Introduction

Fluxes are an essential ingredient in the compactification of string-theoretic and other

higher-dimensional models (see [1] for a recent review). In the present paper, we analyse

the effects that D-terms induced by gauge theory fluxes can have in the context of moduli

stabilization of 6d supergravity compactified to 4 dimensions. Although, at a technical

level, the paper is entirely field-theoretic and relies only on the familiar 6d supergravity

lagrangian of [2], our motivation is largely string-theoretic, as we now explain:

One of the perceived problems of the KKLT construction [3] of metastable de-Sitter

vacua of type IIB supergravity is the presence of D3-branes (‘anti-D3-branes’), which break

supersymmetry explicitly. Before supersymmetry breaking, the model is characterized by

the superpotential

W = W0 + Ae−aT , (1.1)

where T is a chiral superfield with no-scale Kähler potential. The AdS vacuum of this

model is then ‘uplifted’ by adding D3-branes in a strongly warped region. Since no N = 1

supergravity description of this construction has so far been derived from first principles,

their effect is usually incorporated by adding an uplifting term [3, 4]

VD3 ∼ 1

(T + T )2
(1.2)

directly to the scalar potential (i.e. without specifying the modified supergravity model).1

1It has, however, been argued that a phenomenologically motivated description in terms of non-linearly

realized supersymmetry is sufficient for most practical purposes [5]. This is consistent with the observation

that, when modelling the D3 brane uplift by F -term breaking, the phenomenology turns out to be inde-

pendent of the detailed dynamics of this SUSY breaking sector (unless extra fields violate the underlying

sequestering assumption) [6].
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Following Burgess, Kallosh and Quevedo [7], one can attempt to avoid these difficul-

ties by introducing, instead of D3-branes, supersymmetry-breaking two-form flux on the

worldvolume of D7-branes. This has a well-known N = 1 supergravity description in terms

of a supersymmetry-breaking D-term potential (see e.g. [8 – 11])

VD ∼ D2

T + T
∼ 1

(T + T )3
. (1.3)

As emphasized by a number of authors [12, 5, 13, 14], there are, however, two funda-

mental problems with this proposal: one related to the intimate connection between F - and

D-terms, the other to the gauge invariance of the superpotential. The second problem be-

comes apparent if one recalls that D-terms originate from the gauging of an isometry of the

scalar manifold of the supergravity model [15]. In the present case, the relevant symmetry

is the shift symmetry acting on the imaginary part of T (see [9] for a detailed discussion).

However, the superpotential of eq. (1.1) is not invariant under a shift in Im(T ), rendering

the whole construction inconsistent. To be more precise, while a transformation of W by

a complex phase could be tolerated (being equivalent to a Kähler-Weyl transformation),

the presence of the constant W0 induces a more complicated behaviour and thus an actual

inconsistency. Thus, there is a clash between three ingredients: the 3-form-flux-induced

constant W0, the gaugino condensate inducing the exp(−aT ) contribution [16], and the

gauging of the shift symmetry in Im(T ). Any two of these three ingredients may be able

to coexist in a consistent model.

The above clash can obviously be avoided if light fields other than T are present and

the coefficient A of the exponential term in eq. (1.1) depends on them in such a way as

to render W gauge invariant. Indeed, this is well-known to occur in 4d supersymmetric

gauge theory [17] (see [12, 18] for a discussion in the present context). It has very recently

been demonstrated [11] that, as expected, consistent type IIB compactifications avoid any

potential inconsistency between 2-form flux and gaugino condensation by precisely this

mechanism.2

However, this resolution of the gauge-invariance problem has serious implications for

the whole stabilization/uplifting proposal. To see this, let A = A(Φ1, . . . ,Φn) and formulate

the gauge-invariance requirement for W as

(XΦi∂Φi
+ XT ∂T )W = 0 , (1.4)

where X is the Killing vector of the isometry to be gauged. We can now re-parameterize

the scalar manifold as follows: Choose some complex n-dimensional submanifold transverse

to X, parameterize it arbitrarily by n variables, and finally parameterize the motion of this

manifold along X by one last variable z. Clearly, in this parameterization Xz is the only

non-zero component of the Killing vector and W is independent of the z superfield. Thus,

in the original AdS vacuum, DzW = KzW = 0 and hence Kz = ∂K/∂z = 0. This implies

2For a discussion of the related clash between the gauging of isometries and superpotential corrections

by instantons see [19].
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that the D-term arising after the gauging of the X-isometry, D = iKzX
z , automatically

vanishes at the point of the AdS vacuum.3

Does this mean that the AdS vacuum of KKLT can not be uplifted by a small correction

related to the gauging of an isometry? We would like to argue the opposite as follows. The

D-term uplift has to be understood as a twofold modification of the model in which the

AdS vacuum occurs: One ingredient is the inclusion of extra light fields (A → A(Φ) in the

simplest case), the other is the gauging of an isometry. Without loss of generality, we can

assume

W = W0 + Ae−a(Φ+T ) , (1.5)

with A an appropriately redefined constant. Furthermore, we can make the ansatz

K = −3 ln(T + T ) + g(Φ + Φ) (1.6)

for the Kähler potential, which allows us to gauge the isometry T → T + iδ, Φ → Φ − iδ.

Allowing ourselves to choose an arbitrary functional form for g it is clearly possible to

arrange for the scalar potential

V = eK
[

K−1
ΦΦ

|DΦW |2 + K−1
TT

|DT W |2 − 3|W |2
]

+
1

2
(Reh)−1D2 (1.7)

to have a minimum near the original AdS vacuum with small F terms and a sizeable D-

term D. (Here h is the gauge-kinetic function.) This might then be viewed as a D-term

uplift of the original SUSY AdS vacuum.

Moreover, the following can be viewed as a limiting case of the above proposal: Leave

the T sector of the model, responsible for the SUSY AdS vacuum, completely unchanged

(avoiding in particular any attempt to gauge the shift in ImT ). Instead, add an extra

superfield Φ and gauge it in such a way that, in the vacuum, the D-term dominates over

the F -term. One might consider such an approach as a D-term analogue4 of uplifts by non-

linearly realized SUSY [5], by F -terms in the strongly warped region [6], or by dynamical

SUSY breaking [24] (see also [25, 26]). It is not known whether this or the previously

outlined variant of a D-term uplift have a string-theoretic realization, but there appear to

be no fundamental inconsistencies.

In our following investigation of 6d supergravity with 2-form-flux [27 – 29] (see also [30]

for recent related work), we will not be able to realize one of these conceivable scenarios

to full satisfaction. However, we will develop a number of ingredients that may be useful

in this pursuit in the future.

We begin in section 2 by analysing in detail a simple T 2/Z2 model (easily generalizable

to T 2/Zn) in which two modulus superfields S and T encode (different combinations of)

the dilaton and the compactification volume. We calculate the scalar potential arising in

3This last statement is a simplified rendition of the above-mentioned F -term/D-term problem. It can,

in principle, be avoided by allowing for a Fayet-Iliopoulos term (an additive constant contribution to D

which is not proportional to Kz). However, such effects do not arise the present context of 2-form-flux-

induced D-terms. Furthermore, the above does clearly not represent an objection to the D-term uplift [20]

of non-SUSY AdS vacua [21] arising from the interplay of α′ corrections [22] and Kähler corrections.
4Phenomenological constraints on non-sequestered D-term uplifts were discussed in [23].
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the presence of 2-form-flux in two ways — by integrating the F 2
56 term over the compact

space and by finding the D-term that arises from the gauge transformation of T . Since

the superfield S, which governs all gauge-kinetic functions, does not transform, no gauge

invariance problem arises in the presence of gaugino condensation.5

We continue in section 3 by calculating the one-loop correction to the scalar potential

that arises if hypermultiplets charged under the fluxed U(1) are present. Its parametrical

behaviour is that of a usual Casimir energy, i.e. ∼ 1/R4 in the Brans-Dicke frame (the

frame where the coefficient of the 4d Einstein-Hilbert term is proportional to the torus

volume R2). Due to the quantized coefficient of this loop correction, it is potentially more

important than Casimir energies induced by other (weak) SUSY breaking effects.

One such SUSY breaking effect, which we discuss in section 4, is 6d Scherk-Schwarz

breaking. In close analogy to the more familiar 5d case, it is implemented using an SU(2)R-

symmetry twist and can be viewed, from the 4d perspective, as the introduction of a

constant superpotential W0. We also comment on the (im-)possibility of this type of SUSY

breaking on Zn orbifolds with various n and on other mechanisms for the generation of a

non-zero superpotential.

In section 5 we discuss options for moduli stabilization using the various ingredients

analysed above. Working on a T 2/Z2 orbifold and ignoring, for simplicity, the shape mod-

ulus of the torus, one still has to deal with the stabilization of the superfields S and T

simultaneously. At fixed T , the modulus S is stabilized à la KKLT by the interplay of W0

and gaugino condensate. The depth of the resulting SUSY AdS vacuum depends on T , driv-

ing ReT to small values. This is balanced by the T dependence of the flux-induced D-term,

leading to a stable non-SUSY AdS vacuum. Thus, while the 2-form flux does not provide

the desired uplift, it plays an essential role in the simultaneous stabilization of two moduli.

Unfortunately, the loop correction has the same T dependence as the flux term (being sup-

pressed by an extra power of ReS) so that an uplift using the former is impossible (at least

within our step-by-step approximate analysis). However, we consider the possibility of a

simultaneous stabilization of two moduli by the interplay of W0, gaugino condensate and

D-term an interesting and positive result. The required uplift can, in the present context,

be provided by F -terms of the N = 1 sectors localized at the orbifold fixed points.

Our conclusions are given in section 6 and some technical details of the loop calculation

are relegated to the appendix.

2. A six-dimensional model

We work with the following bosonic action for supergravity coupled to gauge theory in six

dimensions [2, 27]:6

√−g6
−1L = −1

2
R6 −

1

2
∂Mφ∂Mφ − 1

24
e2φHMNP HMNP − 1

4
eφFMNFMN . (2.1)

5A related situation occurring in the presence of both flux and gaugino condensation on the same D7-

brane-stack is discussed in the appendix of [11].
6We use the conventions of appendix B of [31]. Note that our action contains a tensor multiplet besides

the supergravity and the vector multiplet. If one wants to work with a Lorentz invariant action this

enlargement of the minimal setup is unavoidable [32].
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The field strength H is defined as

HMNP = ∂MBNP + FMNAP + cyclic permutations = (dB + F ∧ A)MNP (2.2)

and the above action is invariant under the gauge transformations

δA = dΛ , δB = −ΛF + dC . (2.3)

The extra symmetry related to the Kalb-Ramond B-field and implemented by the 1-form C

will be crucial in the presence of fluxes for F . The metric of the six-dimensional spacetime

R4 × T 2 is taken to be

(g6)MN =

(

r−2(g4)µν 0

0 r2(g2)mn

)

, (2.4)

with µ, ν = 0 . . . 3 and m,n = 5 . . . 6. The r2 in front of (g2)mn controls the size of the extra

dimensions in a convenient fashion, whereas the r−2 in front of (g4)µν acts as an automatic

Weyl rescaling to ensure that the Einstein-Hilbert term in 4D is canonical. The metric of

the internal space is

(g2)mn =
1

τ2

(

1 τ1

τ1 τ2
1 + τ2

2

)

, (2.5)

with the modulus τ ≡ τ2 + iτ1 controlling the shape of the torus. The domain of x5 and

x6 is taken to be a square of unit length, so that
∫ √

g2dx
5dx6 = 1.

We introduce a constant background for the field strength 〈Fmn〉 = fεmn, with f a

quantized number, as typically required in a string model. We split the gauge potential

A into a fluctuation term A and a background term 〈A〉, such that 〈F 〉 = d〈A〉. The

background 〈A〉 cannot be globally defined in the internal space. On the overlap of different

patches, background gauge transformations with a parameter Λ0 are required:

δΛ0
〈A〉 = dΛ0, δΛ0

A = 0 . (2.6)

Given the general gauge transformation formulae

δΛ0
A = dΛ0, δΛ0

B = −Λ0F + dC , (2.7)

it follows that also B is not globally defined, since it is not possible to absorb −Λ0F in dC.

This is clear since the variation of dB, which is independent of C, is in general non-trivial:

δΛ0
dB = −dΛ0 ∧ F . (2.8)

The last expression can be rewritten according to

δΛ0
dB = −dΛ0 ∧ (〈F 〉 + dA) = −dΛ0 ∧ dA = d(dΛ0 ∧ A) = δΛ0

d (〈A〉 ∧ A) , (2.9)

which shows that, for a new field B = B − 〈A〉 ∧ A, the quantity dB is globally defined.

Moreover, the new 2-form B will itself be globally defined provided that

δΛ0
B = −Λ0F − dΛ0 ∧ A + dC = 0 . (2.10)
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The required 1-form C = C(Λ0,A, 〈A〉) (satisfying dC = Λ0F + dΛ0 ∧ A) can indeed be

explicitly given in the case of constant background flux [33].

In conclusion, all the degrees of freedom of B are now described by a new field B =

B − 〈A〉 ∧ A, that is globally defined in the internal dimensions, and thus has a standard

Kaluza-Klein expansion. The gauge transformations of B follow from its definition together

with eq. (2.3) and the explicit form of C. They simplify if we focus on dB since C drops

out:

δdB = −2dΛ ∧ 〈F 〉 − dΛ ∧ dA . (2.11)

For 4d gauge transformations Λ = Λ(xµ), this can be written as

δ (∂µB56 + ∂5B6µ + ∂6Bµ5) = −2∂µΛ〈F56〉 − ∂µΛ(∂5A6 − ∂6A5) . (2.12)

Restricting ourselves to the zero-mode level, any dependence of the internal coordinates

drops out and we find

δB56 = −2Λ〈F56〉 (2.13)

for the B56 zero mode. Note the factor-of-two difference from the naive expectations that

one might have for B56 on the basis of eq. (2.3).7 They are not justified since B is not

globally defined on the internal space and possesses no standard Kaluza-Klein expansion.

We will be interested in the 4d theory arising from the compactification on a supersym-

metric T 2/Z2 orbifold (see section 4 for details). Hence we disregard all 4d vector multiplets

which are eliminated by the orbifold projection, as well as the Wilson line degrees of free-

dom associated with the 5d U(1) gauge theory. What remains are the 4d supergravity and

the vector multiplet with gauge field Aµ together with three chiral multiplets, the moduli

of the compactification. The latter contain the degrees of freedom r, φ, τ1, τ2 and two

scalars related to the 2-form B. The lowest components of the three modulus superfields

are [28, 34]

S ≡ 1
2(s + ic), T ≡ 1

2 (t + ib), τ ≡ 1
2(τ2 + iτ1). (2.14)

where we have used the definitions

t ≡ e−φr2 , s ≡ eφr2 (2.15)

and

bεmn ≡ Bmn , εµνρσ∂σc ≡ r4e2φ(dB)µνρ . (2.16)

The Kähler potential, which can be inferred from the kinetic terms for the scalars after

dimensional reduction and Weyl rescaling, reads

K = − log(T + T ) − log(S + S) − log(τ + τ) . (2.17)

Similarly, the gauge-kinetic function is found to be h(S) = 2S (using the standard conven-

tions of [15]).

Given eq. (2.13), the 4d gauge transformations read

δb = −2fΛ, δAµ = ∂µΛ, (2.18)

7We thank Giovanni Villadoro for discussions about this issue.
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which implies that the only nonvanishing component of the Killing vector is XT = −if .

The resulting D-term D = iKT XT = −f/t leads to the D-term potential

VD =
f2

2st2
. (2.19)

The same potential also follows directly from the 6d gauge-kinetic term, evaluated in the

flux background:

∫

d6x
√

g6
eφ

4
〈FMNFMN 〉 =

∫

d4x
√

g4 eφ f2

4r6
εmnεmn =

∫

d4x
√

g4
f2

2st2
. (2.20)

This represents a nontrivial check of the fact that the flux is described by the gauging of

an isometry from the 4d perspective. (See [35] for a similar computation in heterotic string

theory.) Note in particular that, as advertised in the introduction, the gauge transformation

acts only on T , while the gauge kinetic function depends only on S. Hence, no clash

between gaugino condensate and D-term potential arises. A related situation occurring

in the presence of both flux and gaugino condensation on the same D7-brane-stack has

recently been discussed in the appendix of [11].

3. Loop corrections

As an example of a loop correction in the presence of flux, the one-loop Casimir energy

of a charged 6d hypermultiplet is computed in this section. This is expected to be the

dominant contribution because the constituents of the charged hypermultiplet feel the flux

directly. We first derive the Casimir energy for T 2 and then redo the computation with

the degrees of freedom that remain in the spectrum for T 2/Z2.

The constraints on the gauge and matter content of a consistent anomaly free 6d

theory [36] allow the presence of the charged hypermultiplets that we are introducing.

Unfortunately, these constraints typically impose also the presence of extra gauge sectors,

with extra matter multiplets, whose analysis goes beyond the scope of the present work.

In this sense, our model has to be considered as a sector of a complete theory, under the

assumption that such a completion does not affect the moduli stabilization studied here.

For the Casimir energy calculation one first has to derive the mass spectra of the

charged 6d scalars and Weyl fermions. A 6d hypermultiplet consists of two complex scalars

and one 6d Weyl fermion which enter the action in a quite complicated way [2]. We will

linearize the σ-model and work with canonical kinetic terms, neglecting the self-interactions

of the scalars. This is expected to be a good approximation as long as the mass scale of

gauge interactions in 6d is much lower than the 6d Plank scale, 1/gYM,6 ¿ MPl,6. Note

that the kinetic terms do not contain the 6d dilaton φ [2]. In the derivation of the mass

spectra we follow [37].

As in the case without flux, the masses of the scalars are given by the eigenvalues of

the Laplacian on the compact space. For one minimally coupled complex scalar field with

covariant derivative D, the Laplacian reads

1

r4

(

D2
5 + D2

6

)

, (3.1)
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where we have used the decomposition of eqs. (2.4) and (2.5), assuming τ1 = 0 and τ2 = 1.

In the case of a nonzero constant flux the covariant derivatives no longer commute,

[D5,D6] = iF56 = if. (3.2)

Algebraically, this is equivalent to a one-dimensional harmonic oscillator with unit mass

and unit frequency. For positive f the correspondence is

Hamiltonian ↔ 1
2

(

D2
5 + D2

6

)

position ↔ D5

canonical momentum ↔ D6

} ↔ f. (3.3)

For negative f , the position and momentum operators have to be interchanged but the

mass spectrum is not affected. It reads

m2
n =

2|f |
r4

(

n + 1
2

)

, (3.4)

where n is a non-negative integer. Note that the n-dependence of this mass spectrum is

quite different from the usual Kaluza-Klein tower (m2 ∼ n2
1 + n2

2) resulting from compact

dimensions without flux.

Some care has to be taken in deriving the fermionic Kaluza-Klein towers, as is ex-

plained in section 14 of [38]. Since the Dirac operator couples righthanded fermions to

lefthanded fermions, only its square can have eigenfunctions. The masses of the fermions

are determined by

m2
nr4ψn =

(

Γ5D5 + Γ6D6

)2
ψn, (3.5)

where the ψn are 6d spinors. Observing that

(

Γ5D5 + Γ6D6

)2
= D2

5 + D2
6 + iΓ5Γ6f, (3.6)

it is clear that the problem differs from the bosonic case only by a shift if the spinors are

eigenvectors of Γ5Γ6. To quantify the effect of the shift, recall that

Γ7 = iγ5Γ5Γ6, (3.7)

and that the 6d chirality is fixed. Decomposing the 6d spinor into a direct sum of two 4d

Weyl spinors, we now see that the shift is determined by the chirality of each 4d spinor. The

fermionic eigenfunctions are the same as the bosonic ones, the only difference is that they

carry an extra chirality index which induces a shift of their masses. The mass spectrum of

4d Weyl fermions reads

(m2
n)± =

2|f |
r4

(

n + 1
2 ± 1

2

)

. (3.8)

Another point which has to be addressed is the degeneracy of the spectra. The quickest

derivation uses the two-dimensional index theorem, which in our case counts the number

of massless fermions. We find that

ind(Γ5D5 + Γ6D6) =
1

2π

∫

T 2

F =
f

2π
= N. (3.9)

– 8 –
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Thus the monopole number equals the degeneracy of the state with vanishing mass. It

is clear that the ground state of the fermions of opposite chirality has the same degeneracy,

because we are considering the same Laplace operator to which merely a constant is added,

and thus we find precisely the same eigenfunctions. By the same argument we conclude

that the bosonic ground state is N -fold degenerate.8 From the oscillator algebra it then

follows that all excited states have the same degeneracy as the ground states. Thus every

fermionic and every bosonic level is populated by N states. An extra factor of two arises

in the bosonic sector because of the two complex scalars in the hypermultiplet.

With this particle spectrum we directly compute the one-loop effective potential from

a four-dimensional perspective. In dimensional regularisation and after Wick rotation to

Euclidean space it reads [39]:

∑

δ=0,±1/2

(−1)2δ(2 − 2|δ|)|N |
∞
∑

n=0

∫

dDk

(2π)d
ln(k2 + m2

n(δ)), (3.10)

where

m2
n(δ) =

2|f |
r4

(n + 1
2 + δ) (3.11)

are the bosonic (δ = 0) and fermionic (δ = ±1/2) mass spectra. This expression is

computed in the appendix, giving the result:

VCasimir =
7

4

|N |3
(st)2

ζ ′R(−2) ∼= −0.053
1

(2π)3
|f |3
(st)2

(3.12)

Here we have used the quantization condition for the flux, eq. (3.9).

The computation is analogous, albeit technically more involved, in the T 2/Z2 case.

Details are presented in the appendix. The result is:

V ±
Casimir =

7

4

1

(2π)2

(

f

st

)2

ζ ′(−2)J±
N

= −0.053
1

(2π)2

(

f

st

)2

J±
N , (3.13)

where we have defined

J±
N ≡ |N | ± 4 (3.14)

and the flux quantization condition is

1

2π

∫

T 2/Z2

F =
f

4π
= N, (3.15)

where the first equality follows from the definition of T 2/Z2, the second one from the fact

that the flux quantization condition on a sphere is equal to that on a torus.

The two signs in V ± stem from the different internal parity that may be assigned to

the fermions on the massless level.

8This can also be checked by explicitely computing the zero eigenfunctions. They are given in the

appendix.
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This correction should be understandable as a correction to the Kähler potential. We

found a non-zero Casimir energy because SUSY is broken, which in turn is a result of the

flux. The flux was shown to generate a D-term potential in section 2. We can trace the

correction to the D-term potential back to a correction to the Kähler potential if we assume

that the gauge symmetries of our model remain unchanged. Neglecting higher orders in

1/r we find

f2

st
(∆K)T = − 1

(2π)2
7

4
ζ ′(−2)

(

f

st

)2

J±
N , (3.16)

so that we can conclude

∆K = − 1

(2π)2
7

4
ζ ′(−2)

(

1

S + S
log(T + T )

)

J±
N . (3.17)

4. Scherk-Schwarz twists as a source for W0

The presence of closed string fluxes in a type IIB model induces a superpotential Wflux(z),

that depends on the complex structure moduli z. The latter are thus stabilized at certain

values zmin and, from the point of view of the low-energy effective theory, the superpotential

at the minimum is a constant W0 = Wflux(zmin). If W0 6= 0, a SUSY-breaking no-scale

model results. In the KKLT construction, a SUSY AdS vacuum is present due to the

interplay between W0 and gaugino condensation. We would like to reproduce this basic

structure in our 6d approach. We could in principle introduce a constant W0 in our

model by appealing to the presence of closed string fluxes, since the model can be seen

as an intermediate step in the compactification of 10d string theory. In praxis this is not

convenient for the following reason. If, on the one hand, closed string fluxes are present in

the 6d bulk we consider, we have to start from a more complicated lagrangian. If, on the

other hand, the relevant fluxes are present only in the “hidden” four extra dimensions, we

loose much of the explicitness of our construction, which is based on a well-known consistent

6d supergravity model. It is therefore convenient to introduce W0 as the manifestation of

Scherk-Schwarz (SS) twists in the two compact extra dimensions as we now discuss in more

detail [40] (see [41] specifically for the 6d case).

The 6d supergravity theory studied in section 2 possesses an SU(2)R R-symmetry. This

can be checked by direct inspection, or by considering it as the result of the compactification

of 10d string theory [42]. We follow the second approach. A 10d Majorana-Weyl spinor

(a real 16 of SO(1,9)) transforms as 4⊕ 4′ under the SO(1,5) subgroup. The action of

the R symmetry group SU(2)R×SU(2)R′ , which comes from SO(1,9)⊃ SO(1,5)×SO(4)=

SO(1,5)×SU(2)R×SU(2)R′ , is such that the 4 and 4′ transform only under SU(2)R and

under SU(2)R′ respectively.9 Consider now the compactification of a 10d N = 1 model

9Notice that the R-symmetry group does not mix spinors with different 6d chirality. Indeed, SO(4) can

change neither the internal chirality, by definition, nor the 10d chirality, since it is part of SO(1,9), and the

product of 6d and internal chirality gives precisely the 10d chirality.

A slightly different perspective on the situation can be given as follows: A 10d Weyl spinor (a complex 16)

transforms under SO(1,5)×SU(2)R×SU(2)R′ as (4,2,1)⊕ (4′,1,2). The 10d reality constraint is imposed

on each of these two terms independently, without mixing them. This leads to two complex-4-dimensional
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on some orbifold limit of K3, such as T 4/Zn. The SUSY generator is a real 16. Taking

the orbifold group to be generated by one of the elements of SU(2)R′ , the supersymmetry

associated with the 4′ is broken, while that associated with the 4 is preserved. We thus

end up with the R-symmetry group SU(2)R since, as explained, the 4 is also a doublet of

SU(2)R.

In the presence of the SU(2)R symmetry, we can compactify the 6d theory on T 2

imposing non-trivial field-identifications. Given a generic SU(2)R doublet Φ(xµ, x5, x6)

(e.g. the gaugino) we require

Φ(xµ, x5, x6) = T5Φ(xµ, x5 + 1, x6), Φ(xµ, x5, x6) = T6Φ(xµ, x5, x6 + 1), (4.1)

where the matrices Ti embed the translations ti along the torus coordinate xi in the R-

symmetry group. Since t5t6 = t6t5, we also require T5T6 = T6T5. In case one (or both)

of the matrices are non-trivial, we obtain a SS dimensional reduction. If one of the two

matrices is trivial, e.g. T6, the consistency requirement is automatically satisfied and we

can shrink the x6 direction, obtaining an effective 5d model. From this perspective, the SS

twist due to T5 can be seen as a standard SS twist in a 5d model compactified on S1.

For an orbifold compactification of the 6d theory, the rotation operator r∈ SO(2) is also

embedded in the R-symmetry group via a matrix R. A non-trivial embedding is crucial

for SUSY not to be broken in a hard way: in case R =
�

the net action of the orbifold on

any 4d spinor would indeed result in a non-trivial phase, projecting it out of the spectrum.

Having such a non-trivial embedding, extra consistency conditions must be fulfilled, which

we now study on a case-by-case basis.

In the case of a Z2 orbifold, r2 = 1, rti = t−1
i r, and we have to impose these conditions

also on the corresponding transformations of the spinors. Non-trivial solutions to these

conditions exist [41], as can be easily demonstrated explicitly: The transformation asso-

ciated with r is R̃ = S(r)R, where S(r) is the phase rotation of the two 4d Weyl spinors

coming from a 4 of SO(1,5). In the Z2 case, we have S(r) = i
�
. Choosing R = diag(−i, i),

we find R̃ = diag(1,−1).10 This matrix satisfies the required consistency relations with

Ti = exp(iαiσ2). In case only one of the Ti’s is non trivial, e.g. α6 = 0 and α5 = α, we can

shrink the x6 direction, obtaining a 5d effective field theory compactified on S1/Z2. In this

case it is well known that the continuous SS parameter α can be described by a tunable

constant superpotential W0 ∼ α [43]. In the rest of the paper, we mainly consider such a

T 2/Z2 compactification, the 4d field content of which was already anticipated in section 2.

Notice that with such a field content a constant W0 leads, in absence of any other effects,

to SUSY breaking with zero tree-level potential, as expected in a SS reduction.

In case of a Z3, Z4 or Z6 reduction, the field content would be even more appealing,

since the τ multiplet is projected away. However, the consistency conditions for a SS

representations of both SO(4) and SU(2) which, however, can not anymore be viewed as a (4,2), i.e., as a

tensor product of two complex representations.
10The computation above can be generalized to the case of the scalars present in a hypermultiplet coming

e.g. from a 10d gauge multiplet, which form a doublet of SU(2)R and also a doublet of SU(2)R′ . There is

no direct action of the rotation on the scalars, which therefore transform only due to the embedding of r in

SU(2)R× SU(2)R′ via R̃ = R ⊗ R′. Given R as above, R′ must be chosen such that R̃2 = �, e.g. R′ = R.
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reduction are now more stringent and cannot be satisfied, not even by discrete SS twists.

To see this, let us first give a geometric description of SS breaking on a T 2/Z2 orbifold.

The compact space emerging after the orbifold projection has the topology of a sphere

and contains 4 conical singularities, each with an opening angle π. The SU(2)R twists

create a non-trivial R symmetry holonomy for paths encircling any of the singularities.

To avoid hard supersymmetry breaking at the singularities, the size of the corresponding

SU(2)R rotations has to match the opening angle of the conical singularity. This ensures

that, in the local environment of each singularity, a covariantly constant spinor exists.

Specifically, using the canonical map from SU(2) to SO(3), the R symmetry twist at each

singularity, mapped to SO(3), has to be π (matching the rotation in physical space). The

overall SUSY breaking to N = 0 arises from a misalignment of the 4 twists at the 4 conical

singularities. This is clearly possible since one can find 4 SO(3) rotations around different

axes which altogether give a trivial rotation. (The product of the 4 rotations has to be

trivial since a path encircling all 4 singularities can be contracted without encountering

another singularity.)

Now consider a T 2/Z3 orbifold instead. The fundamental space still has the topology

of a sphere, but this time with 3 conical singularities, each having an opening angle of

2π/3. The R symmetry twist at each singularity (when mapped to SO(3) in the canonical

way) has to be 2π/3 to avoid hard local SUSY breaking. Given again the global constraint

(a loop encircling all 3 singularities is equivalent to a trivial loop), we need to find 3

rotations of magnitude 2π/3 each which, when multiplied, give
�
. Elementary geometry

shows that this is only possible when all 3 rotation axes coincide, in which case an N = 1

supersymmetry survives in the complete model. Thus, no SS breaking to N = 0 in 4d is

possible. The above argument can be easily extended to the Z4 and Z6 cases. In both cases

one again has the topology of a sphere with 3 conical singularities. The opening angles are

(π/2, π/2, π) and (π/3, 2π/3, π) respectively. Three such rotations can not give
�

in total

unless their rotation axes coincide, which again leads to N = 1 in 4d.

Of course, it is also possible to obtain contributions to W0 by introducing SS twists

along some of the 4 hidden extra dimensions of an underlying string model, or by con-

sidering localized effects within the N = 1 sectors at the orbifold singularities (such as

brane-localized gaugino condensation).

5. Moduli stabilization

In this section we study the stabilization of our model. Besides the D-term potential

induced by the flux and the superpotential generated by the gaugino condensate we assume

a constant piece of superpotential which has a negative sign compared to the superpotential

from the gaugino condensate. This W0 is crucial for the stabilization of the modulus s. We

incorporate perturbative corrections in a second step.

To be more precise we start with the following ingredients:

K = − log(T + T ) − log(S + S) − log(τ + τ), (5.1)

W = µ3 exp(−aS) + W0, (5.2)
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assuming for simplicity that a, µ and W0 are real. The complete scalar potential is then

given by

V =
1

st(τ + τ)

(

µ6(a2s2 + 2as) exp(−as) + 2W0µ
3as cos

(ac

2

)

exp
(

−as

2

))

+
f2

2st2

=
Ṽ (s)

t(τ + τ)
+

f2

2st2
, (5.3)

where the last equation has to be read as a definition of Ṽ (s). This potential stabilizes

both s and t at a negative value of V , as is shown in the following.

Consider first the ‘axionic’ partner of s, denoted by c. As W0 is taken to be negative,

while a and µ3 are positive, c is always stabilized at a value where the cosine is unity.

Thus we assume c = 0 in the following. Since the shift symmetry acting on the modulus b

(the ‘axionic’ partner of t) is gauged, b is absorbed in the massive vector boson. Further

effects have to be taken into account to stabilize the complex structure modulus τ , for

which we assume 2τ = 1 from now on. As explained in section 4, the problem of τ

stabilization does not arise in a T 2/Zn (n > 2) model, where τ is projected away. The

only caveat in these cases is that a non-zero superpotential has to be introduced either by

SS twists along some of the 4 hidden extra dimensions of an underlying string model, or

by localized effects associated with the N = 1 sectors at the orbifold singularities (such as

brane-localized gaugino condensation). Alternatively, τ stabilization could result from the

non-trivial τ dependence of the Casimir energy, which, for simplicity, we do not consider

in our computation (see e.g. [44]).

To get some intuition for the stabilization of s and t, it is advantageous to first set

f = 0 and t = 1. Then the remaining modulus s enters the potential in exactly the same

fashion as in the KKLT model. At the minimum of the potential, s has to solve DSW = 0,

so that we find

W0 + µ3e−
as

2 (1 + as) = 0. (5.4)

This is equivalent to minimizing Ṽ (s). For small W0 we find the approximate solution

as0 ∼ 2 ln(−µ3/W0). (5.5)

This equation shows that as0 can be made parametrically large by tuning W0 to have

small negative values. As an example consider W0 = −0.01, µ3 = 10 and a = 1. The result

is s0 ∼ 20.

The approximate value at which t is stabilized can be found by setting s = s0. This is

reasonable as the extra 1/s contribution coming from the D-term potential will not alter

the value of s at the minimum significantly. The resulting potential for t is then

V (t) =
f2

2s0t2
+

Ṽ (s0)

t
, (5.6)

which is minimized by

t0 = − f2

s0Ṽ (s0)
. (5.7)

– 13 –



J
H
E
P
0
2
(
2
0
0
7
)
0
1
5

Figure 1: F -term and D-term scalar potential as a function of s and t.

Equation (5.3) implies Ṽ (s0) ∼ −10−5. In our example we take the flux to have its minimal

nonzero value. Due to the quantization condition in the orbifold case, f = 4πN , this is

4π. With these numbers eq. (5.7) gives t0 ∼ 106. The exact potential is displayed as a

contour plot in figure 1. At the minimum both s and t take roughly the expected values.

It is worth noting that the minimum of the potential is always at a negative value in this

setup, as is best seen from eq. (5.6). The positive piece quadratic in 1/t is dominant for

small t, whereas the negative piece linear in 1/t is dominant for large t. This tells us that

V (t) comes from positive values and approaches zero from below for t → ∞. So clearly V

is negative in the minimum. This behavior is a result of the simple t dependence of the

Kähler potential.

We now want to comment on the overall consistency of our solution. For the effective

4d description to be valid we need the compactification scale to be below the 6d Plank

scale. At the same time the Yang-Mills scale has to be below the 6d Plank scale, but

above the compactification scale. We thus require the scales of our model to fulfill M2
Pl,6 >

M2
YM,6 > M2

C. The squared Yang-Mills scale in 6d is given by the prefactor of the 6d

gauge-kinetic term, so it is equal to exp(φ0). With exp(φ) =
√

s/t we find M2
YM,6 ∼ 10−2,

so that the first inequality holds.11 The compactification scale is set by the volume of the

internal dimensions, M2
C = r−2

0 = (s0t0)
−1/2 ∼ 10−4, so that the second inequality also

holds.

The perturbative corrections of section 3 do not alter the stabilization qualitatively.

As a contribution to the effective action, they can simply be added to the scalar potential,

which now reads

V (t) =
f2

2st2
+

Ṽ (s)

t
− 0.053

1

(2π)2

(

f

st

)2

J±
N . (5.8)

11Note that we have chosen units in which MPl,6 = 1.
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We see that the minimum is driven to slightly larger values of s and t. It is interesting that

the loop correction becomes more important than the D-term potential for large fluxes.12

This can be understood physically since the degeneracy of the spectrum grows with the

flux. Increasing the monopole number, and thus the flux, is equivalent to increasing the

degrees of freedom that are present on each Kaluza-Klein level.

6. Conclusions

We have approached the set of problems associated with moduli-stabilization and D-term

uplift from the perspective of a simple field-theoretic model. Motivated by the apparent

inconsistency between the flux and the gaugino condensate, we have studied an explicit

compactification of 6d supergravity, which allows for these two ingredients. This model is

directly relevant from a string-theoretic perspective since it can be seen as an intermediate

step in the compactification of 10d string theory on a “highly anisotropic” background,

with 4 small and 2 large internal dimensions [45].

The gauging and the D-term potential that arise upon introduction of the flux are

determined and found to match in the standard supergravity fashion, confirming that the

flux really triggers a D-term. The modulus that enters the superpotential generated by

gaugino condensation is different from the modulus on which the gauged shift symmetry

acts. Any potential inconsistency is thus avoided in a natural and attractive way.

To stabilize our model, we discuss two sources for extra potential terms: an R symmetry

twist and perturbative corrections. The R symmetry twist is described in terms of a

constant superpotential W0, so that one of the two main compactification moduli is fixed

in a fashion similar to the KKLT model. The other modulus is stabilized by the interplay

between the D-term and the F -term potential. This mechanism always leads to a non-

supersymmetric AdS vacuum in which supersymmetry is broken by both the D-term and

the F -term.

As a perturbative correction, we considered the Casimir energy of a charged hyper-

multiplet in the presence of flux. We explicitly calculate these loop corrections for both

the T 2 and T 2/Z2 geometry. From the supergravity perspective, they can be viewed as

Kähler corrections, which we also display explicitly. In many cases, our corrections will be

more important than the vacuum energy induced by the Scherk-Schwarz twist, since the

latter becomes parametrically small in the limit of small W0. By contrast, the flux-induced

corrections can not be tuned to be small because of flux quantization. It would be inter-

esting to find the counterpart of string-theoretic α′ corrections in our 6d framework and

to compare them to the flux-induced Casimir energy.

The above perturbative corrections do not destabilize the non-SUSY AdS vacuum we

found previously. However, they are also unable to provide the desired uplift. Thus, a

phenomenologically relevant construction would have to include further effects, such as an

F term potential arising in the N = 1 sectors localized at the orbifold fixed points.

12Recall that J±

N
' |N | ∼ |f |/4π for large |N |.
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A. Computation of the Casimir energy

To compute the Casimir energy we use that
∫

dDk

(2π)D
ln

(

k2 + m2
)

= −Γ(−D/2)

(4π)D/2
mD. (A.1)

We need to compute expressions of the form

∑

n

∫

dDk

(2π)D
ln

(

k2 + m2
n(δ)

)

= −Γ(−D/2)

(4π)D/2

∑

n

mD
n (δ) ≡ Iδ, (A.2)

where

m2
n(δ) =

2|f |
r4

(

n + 1
2 + δ

)

(A.3)

are the bosonic/fermionic spectra as computed in section 2. Using the Hurwitz and Rie-

mann zeta functions, denoted by ζH and ζR respectively [46], we find that

Iδ = −Γ(−D/2)

(4π)D/2

(

2|f |
r4

)D/2

ζH(−D/2, δ + 1
2). (A.4)

The limit D → 4 for δ = ±1/2 and δ = 0, which are the cases of interest to us, can be

computed by noting that ζR(−2) = 0 and using the expansions

Γ(ε − 2) =
1

2ε
+ O(1) (A.5)

ζH(ε − 2, 1/2) = (2ε−2 − 1)ζR(ε − 2) = −3

4
ζ ′R(−2)ε + O(ε2). (A.6)

We find that

I0 =
3

8

1

(4π)2

(

2f

r4

)2

ζ ′R(−2) (A.7)

I1/2 = I−1/2 = −1

2

1

(4π)2

(

2f

r4

)2

ζ ′R(−2), (A.8)

where ζ ′R(−2) = −ζR(3)/(4π2) = −0.0304. The equality in the last line follows from

ζH(x, 1) = ζH(x, 0) ≡ ζR(x).

The T 2 case. Taking the degeneracy of the spectra and the flux quantization (f = 2πN)

into account, the Casimir energy of one charged hypermultiplet on T 2 can be expressed as

VCasimir = 2|N |I0 − 2|N |I1/2

=
7

4

|N |3
(st)2

ζ ′R(−2) ∼= −0.053
1

(2π)3
|f |3
(st)2

(A.9)
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The T 2/Z2 case. To find which states are projected away in the orbifold case we need

to determine the parity of the zero eigenfunctions. Up to normalization they read

Φj =

∞
∑

m=−∞

exp

(

−1
2 |f |

(

x5 −
1

|2N |(|2N |m + j)

)2
)

exp (2πi(|2N |m + j)x6) , (A.10)

where we have used an appropriate gauge [37] and imposed the T 2/Z2 flux quantization

condition f = 4πN . By shifting m it is easy to see that Φj = Φj+|2N |, so that there are

|2N | distinct eigenfunctions. We find that the parity operation (i.e. the Z2 rotation) maps

Φj to Φ−j and hence to Φ|2N |−j. Thus we conclude that

Φe
j ≡ Φj + Φ|2N |−j (A.11)

has even parity and

Φo
j ≡ Φj − Φ|2N |−j (A.12)

has odd parity. Note that there is no Φo
|N |, but just a Φe

|N | = 2Φ|N |. Furthermore Φ|2N |

always has even parity. Besides these exceptions the rest of the spectrum pairs up according

to the equations above. The number of even eigenfunctions (Ne) is then

Ne = |N | + 1. (A.13)

To find the number of remaining states on the excited levels, we use the fact that the

raising and lowering operators are linear in D5 and D6, so that they anticommute with the

generator of the Z2.

The two complex bosons have different internal parity assignments, so that we find

|2N | of them on each mass level. This is not true for the fermions, because the ground

states of different chirality, and hence different internal parity, have different masses:

(m2
n)± =

2|f |
r4

(

n + 1
2 ± 1

2

)

. (A.14)

We first analyse the tower containing massless states and assume that its fermions have

positive internal parity.13 On the ground state we find Ne massless fermions that remain

in the spectrum. By acting 2n times with the raising operator we find Ne surviving states

on the level 2n, so that we generate a spectrum with masses

m2
n =

2|f |
r4

(2n) (A.15)

and degeneracy Ne. If we consider the |2N | −Ne = |N | − 1 states that are projected away

from the ground state and act once with the raising operator, we find |N | − 1 fermions

on the first excited level that are even under the orbifold projection.14 From there we

13If the massless fermions have negative internal parity, the computation is the same with Ne and (|2N |−

Ne) interchanged.
14Note that the raising operators do not change the chirality.
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can again act 2n times with the raising operator to find more states that remain in the

spectrum. We thus generate a second tower with masses

m2
n =

2|f |
r4

(2n + 1) (A.16)

and degeneracy |N | − 1. We now turn to the fermions of the opposite chirality and hence

opposite internal parity. On the ground state of this tower we find |2N | − Ne = |N | −
1 remaining states with masses 2|f |/r4. By the same argument as above this yields a

spectrum

m2
n =

2|f |
r4

(2n + 1), (A.17)

with degeneracy |N | − 1. Acting with the raising operator once on the Ne ground states

that are projected away we find Ne states on the first excited level that remain in the

spectrum. These generate a tower of masses

m2
n =

2|f |
r4

(2n + 2) (A.18)

with degeneracy Ne. As expected, the degeneracy of each state is roughly half of what we

found before performing the Z2 projection.

By appealing to the definitions made at the beginning of the appendix we find

Vbosons = |2N |I0, (A.19)

and

V +
fermions = −8

(

(|N | + 1)I−1/2 + (|N | − 1)I0

)

(A.20)

if the massless fermions have positive internal parity. If the massless fermions have negative

internal parity the fermionic contribution to the Casimir energy reads:

V −
fermions = −8

(

(|N | − 1)I−1/2 + (|N | + 1)I0

)

. (A.21)

Putting everything together and using the explicit expression for Ne the complete Casimir

energy reads

V ±
Casimir = 7

(

N

st

)2

ζ ′(−2)J±
N , (A.22)

where we have defined

J±
N ≡ |N | ± 4. (A.23)

The different signs in J±
N are related to the different parities of the massless fermions: if

the parity is positive, the sign is ‘+’, if the parity is negative, the sign is ‘−’. Note that

we recover the Casimir energy of the untruncated spectrum if we add V + and V − and

remember that N = f/4π.
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